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ABSTRACT

In this paper, we have considered a quasi-difféatmxpressionsr of ordern with complex coefficients and its

formal adjointz*on[0, b) respectively. We have shown in the case of ogeilsinend-point and under suitable conditions
on the integrand functiof (t, y,y Ly, S(y))that all solutions of integroquasi-differential extion [t — AI]y(t) =
wF are bounded and?, —bounded ofD, b)provided that all solutions of the equatign — AI)y = 0 and its formal

adjoint(r+ - Zl)v = 0 possess the same property, whefe) is the Sumudu transform of the funcgion
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1. INTRODUCTION

The problem that all solutions of a perturbed Imdifferential equation belong tf, (0, ©) assuming the fact that
all solutions of the unperturbed equation posdassame property considered by Wong,Zettland Efderi4]. In [5,6] S.
E. Ibrahim extended their results for a generalsgddferential expressiorr of arbitrary ordern with complex

coefficients, and considered the property of bodnéss of solutions of a general integro quasi-difféal equation

[yl — Awy = wf (t,y) (2eC)on[0, b) , (1.2)
wheref (t, y)satisfies

If(t,y)] < k(t) + h(t)|y(t)]°, te[0,b)for somes €[0,1],
provided that all solutions of the equations:

(z-A)u =0 and(z*-A)v =0 (1eC), (1.2)

and their quasi-derivatives are in the spgad®, b) .

www.iaset.us editor @ aset.us



2 Sobhy EI-Sayed | brahim

Our objective in this paper is to extend the resuit[1 - 6] to more general class of integroqudifierential

equation in the form:

[t — My (t) = wF[t,y, y!, ..., y™,S(3)] on0, b), (1.3)
where?[t,y, y1, ...,y $(y)] satisfies

|F[t,y, y1, ..,y S| < k(@) + h(t) Xo|SG)yP| " ,t €[0,b),0 < b < (1.4)

for someo €[0,1], k(t), h(t) are non-negative continuous functiong@@h)andS(y) is the Sumudu transform
of the functiory. Also, we prove under suitable conditions on thacfionF that, all solutions of the equation (1.3) are

bounded and?, — bounded on the intervfd, b)provided that all solutions of the equatign— AI)y = 0 and its formal

adjoint (r+ - Il)v = 0 possess the same property, whérss the formal adjoint af
2. SumuduTransform and Some Technical Lemmas

The Sumudu transform method (STM) was in parniaited in 1993 by Watugala [7-9]who used it tdveo
engineering control problems. The first applicatioh the inverse formula was done by Weerakoon [H}mudu
transformbased solutions to convolution type irdégguations and discrete dynamic systems wenedatained by Asiru
[11-13]. Subsequently, it expanded to two variaiigd 4].

Definition 2.1 (cf. [7-14]): The Sumudu transform is defined for possibly bitatéunctions in the set,

tl

A={f(t) 13K, t;,t, >0, |f(t)| < Keti, ift € (1) x [0,0)}, (2.1)
by the following integration,
F@) = S[F(O)] = [, flut)e™t dt, u € (=t;, 1) (2.2)

Remark: Note that by considering for instangdt) = efthery (ut) = e** and hence,the Sumudu transform (Right side, t

is non-negative) of the functighis then,

S[f®)] = fooe“te‘t de,

b
= lim | e%e tdt

b-x

(u-1t
=lim,_, —— b =—, 0<u<1 (2.3)

1-u
Ifu = 1, then the previous integral will be divergent.

The Sumudu transform of the first derivative of faactionf (t), f'(t) = df(t)/dtis given by:

S[£2] = 1{F @) - £(O)]. (2.4)

dt

The Sumudu transform of the second derivativé@), f'(t) = d*f(t)/dt?is given by:
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On Classifications for Solutions of I ntegroQuasi-Differential Equations 3

S[dzf(t) =u—12[F(u)—f(0) _udf(t) It:O]' (2.5)

dt? dt

Theorem 2.2 (cf. [14]):If F(u) is Sumudu transform ¢f(t), then the Sumudu transform of any integer n-od#eivative
of £(t), f™(t) = d™f(t)/dt" is given by:

S [m = n [F(u) —f(0) = Xrzou” 2@ It:O]' (2.6)

dtm dtk
In the sequel we shall require the following noeéin integral inequality which generalizes thosesgrdl

inequalities used in [1- 6] and [15 - 22].

Lemma 2.3: Gronwall s Inequality (cf. [1-6] and [15-17]):Let u(t) andv(t) be two non-negative continuous functions

on the intervall = [0,b), ¢ = 0 be a constant. The classical Gronwalhequality states that: if

u(t) <c+ ftv(s)u(s)dx, 0<t<1.
0

Then
u(t) < cexp (fotv(s)ds) ds. 0<t<1. (2.7)

Lemma 2.4: (cf. [1-6] and [21, 22])Let u(t) andv(t) be two non-negative continuous functions and lgdategrable

on the intervdl = [0, b), g€ [0,1]. Then the inequality

t

u(t) <cy + f v(Su®(s)dx, ¢,>0.
0
For0 < o < 1, implies that

1
u(t) < ((co)(l—ﬂ) +(1-0) fotv(s)ds)(l_a) ds. (2.8)
In particular, ifv(s) € L*(0, b), then (2.8) implies that(t) is bounded.

Lemma 2.5: (cf. [1-6], [21, 22]):Let u(t), z(t), g(t) andh(t) be non-negative continuous functions defined an th

intervall = [0, b) and suppose that the inequality

u(t) < z(t) + g(&) (J; u(s)h(s)dx)*for ¢ > 0.

Then

1

u(t) < z(t) + g() ([} 222 ($)A(Sexp[[; 297 (Ih(x)dx]ds)’, for ¢ > 0. (2.9)
3. Quasi-Differential Expressions

The quasi-differential expressions are definedeims of a Shin-Zettl matrid on an interval. The setZ,,(I) of
Shin-Zettl matrices or consists ofn x n-matricesA = {a,,} whose entries are complex-valued functionsl amhich

satisfy the following conditions:
a,sel, (D), 1<rs<nn=2)
arrp1 # 0, a.eonl, 1<r<n-1) (3.1)
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4 Sobhy EI-Sayed | brahim

as=0ae.0nl, 2<r+1<s<n).
ForAeZ,(I),the quasi-derivatives associated witlare defined by:
yl =y,

y[r] = (f‘r,‘r+1)_1 {(y[‘r—l]) - Z§=1 Qrs y[s—l]},(l <r<n-1), (3-2)

’ n
y[n] = {(y[n—l]) _ Z 1ans yls‘l]},
s=

where the primédenotes differentiation .
The quasi-differential expressiarassociated witd is given by

] =iy, (n>2), (3.3)
this being defined on the set :

V() = {y: yIr=UeAC,.(D, r=12, ...,n},

whereAC,,.(I),denotes the set of functions which are absolutehtinouous on every compactsubintervallof
The formal adjointr*ofzr is defined by the matriA* given by:

L] =inyM, forall yev(c?), (3.4)

Vit = {y: yir_l]eACloc(l),r =12, ...,n},

Whereyir_l], the guasi-derivatives associated with the matriinz,, (1),
A+ = (ars)+ = (_1)r+s+1 an—s+1,n—r+1 ’ (3-5)
for eachr ands .

Note that:(4A*)* = A andsqz*)* = 7. We refer to [4 -6], [15] and [18-20] for a full emunt of the above and

subsequent results on quasi-differential expression

For u eV (1) ,veV(z*)anda, Bel , we have th&reen's formula

f; {E‘r[u] - um} dx = [u,v](b) — [u,v](a), (3.6)

where

[w, v](x) = i (Z (—1)r+s+1 ulr] (x)vi[_n—r—l] (x)>

v
= (=) (w,u, .., ul ) X [ X _[ni_l] (x); (3.7

+

see [1], [5, 6], [15] and [20].
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On Classifications for Solutions of I ntegroQuasi-Differential Equations 5

Let the intervall have end-pointsz,b(—w < a < b < »),and letw : I - R be a non-negative weight function
with weLl,.(DDandw > 0 (for almost allxel). ThenH = L2,(I)denotes the Hilbert function space of equivalerasses

of Lebesgue measurable functions suchftlhratfl2 < o0; the inner-product is defined by:

(f9) = [,f (g ()dx (f, geLs, (D). (3.8)
The equation

T[u] — Awu = 0(1eC)onl, (3.9
is said to beegular at the left end-poinkR, if for all Xe (a, b),aeR, w, f..el*(a,X), (r,s =1,2,...,n).

Otherwise (3.9) is said to ngular ata . If (3.9) is regular at both end-points, then is&d to be regular; in this case,

we have
a,beR, w,f.ell(a,b), (r,s=1,2,..,n).

We shall be concerned with the case wheis a regular end-point of (3.9), the end-pdibeing allowed to be
either regular or singular. Note that, in view 8f), an end-point af is regular for (3.9), if and only if it is reguléor the

equation

*[v] — Awv = 0 (1eC) on I. (3.10)
Note that, at a regular end-poimt sayu[r‘l](a)(vfrr_l(a)),r =1,2,...,n is defined for allueV (z) (veV (z1)).

Denote bys(7) andS(t™) the sets of all solutions of the equations

(t-2l)u=0 andtt-21,))v =0 (3.11)

respectively, and Ief" (1) = {y[r]: (r-4Dy=0,r=12,..,n— 1} denotethe set of all quasi-derivatives of soluioh

the equatior{t- A,))u = 0.Let @, (t, 1), k = 1,2, ..., nbe the solutions of the homogeneous equation

(T— M)u = 0 (1€C), (3.12)
satisfying
(p][-k_l] (to, ) = 6y 41 for alltyela, b), (,k=12,..,n, r=0,1,..,n—1),

for fixedt,, a < t, < b. Then<p][.r](t, A) is continuous in(t,A) fora <t < b, | 1| < «,and for fixedt it is entire inA .Let

;i (t, 1), k=1,.2,..,n denote the solutions of the adjoint homogeneouatézyu

(z+-AI)v = 0 (2€0), (3.13)
satisfying

(@M (to, ) = (—1)**7 8 ,_,for all t,e[0,b), (k =1,2,...,n, r=0,1,..,n— 1).
Supposé < ¢ < b.By [5, 6] and [15], a solution of the equation

(- ADu = wf (1eC), fel, (0, b), (3.14)
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6 Sobhy EI-Sayed | brahim
satisfyingi"1(c) = 0, r = 0,1, ..., n — 1is giving by

n . |
D) = ((A=20)/) ) e f 0 (5, 1) f(S)w(s)ds,
1K= a
wherep; (t, A)stands for the complex conjugateg@f(t, 1) and for eachj, k, §/* is constant which is independenttofl.
(but does depend in general9n

The next lemma is a form of the variation of parterseformula for a general quasi-differential edqurais giving

by the following Lemma.

Lemma 3.1: (cf. [5, 6, 15]):Supposgell, (0,b) locally integrable function ang(t, 1)is the solution of the equation
(3.14) satisfying:

o"(ty, ) = a,,, forr=0,1,..,n —1,t,€[0, b).
Then

@(t, 1) = Xy a;(De;(t, Ag) + (A = 20) /i™) X ier §% (8, Ao) f; @i (5, 20) f(sIw(s)ds. (3.15)
for some constants; (1), a,(1), ..., @ ,(1)eC, where <1>]-(t, Ao) and @i (s, 4), j, k = 1,2,..,n are solutions of the

equations in (3.11) respectivedyis a constant which is independenttof

Proof: The proof is similar to that in [5,6], [15] and8fR0] for more details.

Remark:Lemma 3.1contains the following lemma as a specisé.

Lemma 3.2: SupposgeLl, (0, b) locally integrable function and (t, 1) is the solution of the equation (3.14) satisfying:
oM(ty, V) = ay,,forr =0,1,..., n — 1tyela, b).

Then

o1(t, ) = By (D] (8, A0) + 5 (A = A0) Ty %0 (£, 40) [ 07 (8, 20) f (s)w(s)ds, (3.16)

forr=0,1,..,n—1.

Proof: The proof follows from Lemma 3.1 and on applying t* quasi-derivatives on both sides of the equatioh5(3
We refer to [4 -6] and [15-18] for more details.

Lemma 3.3: Suppose that for somé yeCall solutions of the equations in (3.11) arel3(0, b).Then all solutions of the
equations (3.12) and (3.13) areL(0, b)for every complex numbet €C.

Proof: The proof is similar to that in [4 - 6], [15-18h@ [20].

Lemma 3.4: If all solutions of the equatiofr-Aew)u = 0 are bounded on [0,b) apgi(t, ,) € LL,(0,b) for some

1 0€C, k =1,...,n. Then all solutions of the equati@r Aw)u = 0 are also bounded on [0,b) for every complex number
A €C.

Lemma 3.5: Suppose that for some complex numbgreC all solutions of the equations in (3.11) are in
12,(0,b). SupposgeL?, (0, b), then all solutions of the equation (3.14) aré3{0, b)for all 1 €C.

Proof: Let{g,(t, 1), 9, (t, 1), ..., o (t, D}, {07} (s, 1), 93 (s, ), ..., i (s, 1)} be two sets of linearly independent solutions
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On Classifications for Solutions of I ntegroQuasi-Differential Equations 7

of the equations (3.11). Then for any solutiopigt, 2 )of the equation(z- Al)¢ = wf(1eC) which may be written as
follows (t — Aqw)¢@ = (A — 15)we + wf and it follows from (3.15) that

P, D) = Xjoy a;(De;(t, ) + iinZ}‘,kﬂ it 40) [, i (6, 20) [(A = Ao)p(s,2) + f(S)Iw(s)ds, (3.17)
for some constantg; (1), a, (1), ..., a,(1)eC. Hence

o= (g@llocan)+)"  [64]loe 0]

X J o3 (6, 20) [12 = Aol (s, D + If () [l (s)ds. (318

Since fel?,(0,b) and @i (.,20)el?,(a,b)for some 1 ,eC, thenpi(.,4,)fell,(a,b),for some A, eCand k =
1, ...,n. Setting

Cj(/D = ;'l,k=1|€jk| f;

P (62| IfF()Iw(s)ds, j=12,...n, (3.19)

then
lp(e, D] < " (lg@]+ ) oy 20)]
j=1

+ 12 = 2ol T | €7 0; (& 20| f,

w;(t,lo)| lo(s, DIIf () w(s)ds. (3.20)

On application of the Cauchy-Schwartz inequalitytte integral in (3.18), we get

@D (l5@]+ D) loye20)

1
2

1A= 20] Zece 7|00 20] (1] |07 @ 20)] wes)as ) (17 loGs DPw(s)ds ) (3.21)

By using the inequalityu + v)? < 2(u? + v?), it follows that

n 2 2
o@D <4) (G +lg@leyea0[" + 42 =20l x
j:

Bt 10y 200 (12 [0 @ A0)] wi)ds) ([l (s, DIPw(s)as). (3.22)

By hypothesis there exist positive constipiand(; such that

”(p](t’lo)”L‘ZIV(o'b) S Kgan(ﬂ(p,:'(s, AO) L‘Z,V(O,b) S Kl’ ],k = 112: ...,n . (323)
Hence
o@D <4) (G + lg@[lee 10
j:
2 2yn jk |2 2(b 2
+ AKZ12 = Aol? 2ot s (6, 20| (I 1o (s, D) Pw(s)ds ). (3.24)

By integrating the inequality in (3.24) betwe@and t, we obtain

[los, D wis)ds < Ky + (412 = Al Eeca 1) f oy (6 2] (f;lo e, DPw)dx) w(s)ds,  (3.25)
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8 Sobhy EI-Sayed | brahim

where

Ky = 4KZ TN (C7 + ;D). (3.26)

Now, on using Gronwalk inequality, it follows that
12 2
[lo(s, DI w(s)ds < K exp (4KZ1A = Aol2 L[| [, (E 20D w(s)ds). (3.27)
Since, ¢;(t, 19)€eLi, (a, b) for someA geCand foy = 1, ..., n,then ¢ (¢, el (0, b).

Remark:Lemma 3.5 also holds if the functignis bounded ofi0, b).

Lemma 3.6:Let feL?,(0,b). Suppose for somé ,eCthat:
()All solutions of(t*-AI) ¢* = 0 are inL2,(a, b).
(ii)<pj[r](t,/10), j=1,..,n are bounded ofD, b) for some =0,1,..,n — 1.
Thenp!™!(t, 2)eL2,(0, b)for any solutions (t, ) of the equatiofz-AI)p = wf , for all 1 €C.

Proof:The proof is the same up to (3.20). By using Len31243.20) becomes,

e ] <) (Il +6m)[of a0 + 12~ Al
fb

On applying the Cauchy-Schwartz inequality to titegral in (3.28),we get

X Zhees 22167 |0 2, 20)

0 (6,20 lo (e, ) |w(s)ds. (3.28)

n n n-1
el =Y (G +lg@Dlel @]+ 11-201 ) > feel e 0]
J= Jk= r=

Z 1
2

- 2 3
X (f(f |0 (6. 20)] w(s)ds) (el e, ) w(s)ds)?, (3.29)
By using the inequalityu + v)? < 2(u? + v?),it follows that

n 2 n n-1_ 2
oDl <4 (@ +lg@P|el @] + -2l Y S (e o) )]
j=1 J jk=14=r=0 J

X (f(f PRI w(s)ds) (2o (s, D" w(s)ds), (3.30)

Sincep; (t, 1)L, (0, b)for somed, € C and<p][.r] (t,A0),j = 1,...,n are bounded of0, b) for somer =0,1,...,n — 1 by

hypothesis, then there exist a positive constgatsds; such that

|¢jr](t,)lo)| < KOand”(p,j(s,)lO) o0 <K,. (3.31)
Hence,
z " 2 2 2 2
oDl < 4k Y (G +la@[) + 4K3K, 12~ 2]
X Xiems ZE1E L (1o (s, D ws)ds) . (3.32)
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On Classifications for Solutions of I ntegroQuasi-Differential Equations 9
By integrating the inequality in (3.32) betweand t, and by using Lemma2.3 (Gronwallinequality),we have the
result.

4. Boundedness and.2, — Solutions

In this section, we shall consider the questiodetErmining conditions under which all solutionglué equation
(1.3) are bounded abfj — bounded.

Suppose there exist non-negative continuous fumekiét) andh(t)on[0, b), 0 < b < wo; such that
IFIt,y, yY, ., yL S| < k(@®) + () IXo|SO)YY|°,  t€[0,b), (4.1)
forsome o €[0,1], —o < ylll < oo, for eachi = 0,1, ...,n — 1;see [1 - 6] and [15].

Theorem 4.1:Suppose that the functidghsatisfies (4.1) withe = 1, S"(r) U S(t*) < L*(0, b) for somer = 0,1, ...,n —
1, for somel, € Cand that

(Dk(®) € L, (0, b)for all ¢ € [0.B),
(i)Ry(t) € L1, (0, bfor all t € [0.b), i =0,1,..,n— 1.

Thenp™(t, 1), r =0,1,..,n— 1 are bounded orf0,b) for any solutionsp(t,1) of the equation (1.3), for
alla € C.

Proof: Note that (4.1) and Lemma 3.6 implies that alusohs are defined of0,b), see [1-6], [15] and [20, Chapter 3].
Let {@1(t, ), @2 (&, 20), ey Pn(t, 20D} {007 (5, A0), 03 (s, o), ..., 07 (s, 20)} be two sets of linearly independent solutions
of the equations (3.11) respectively, andgdét, 1) be any solution of the equation (1.3) [@nb), then by Lemma 3.2, we

have
" [ L T k0]
PN =) Gl +A-1) )  Fflh)
J= k=

X fat 0} (s,20) Ft,y,y1, ...y, S(p()]w(s)ds forr = 0,1,...,n — 1. 4.2)

Hence
n n ) t
el <) la@lef @]+ 12201 e[} e 20) f |0t G5, 20)]
J= Jk= a
X fot |<p,:“(s, AO)| [k(s) + X4 hi(s)|5(<p(s))<p[i]|] w(s)ds,r=0,1,...,n— 1. 4.3)

Since k(s) € L1,(0,b) and ¢ (s,A), k =12,..,n are bounded on[0,b) for some A, € C, we have
i (s, 29)k(s) € LL,(0,b), k =1,2,...,n for somel, € C.Setting

G = 11— Aol Eca|&| [ @ik (6, o) k(SIW(s)ds, j=12,..,n. (4.4)

Then by (2.3)
" T] 1 n n-1 - .
L D N R O )| R ) Ry I N S S | PGPS
j=1 J |1 ul jk=1 i=0 J
x Ji [oF (6 30)| hi(®) | (s, D|w(s)ds, 7= 0,1,..,n 1. s
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10 Sobhy EI-Sayed | brahim

By hypothesis, there exist a positive constaijsandk; such that
|<p][.r](t,/10)| < Kpandgit (t,2,)| < Kiforallt € [0,b); j,k=1,..,n, r=01,..,n— 1.

Hence, by summing both sides of(4.5) frorms Oton — 1,we get
n-1 n n .
Z 0|¢[r](t,/1)| <(n- 1)1(02. 1(c]- +]agD]) + (n — DK KA — ,10|Z N 1|§;k|
r= j= Jk=

x [y (maxosizm-nyhi(s)) (B2 0 s, D )w(s)dx. (4.6)

On applying Gronwalk inequality to (4.6) and by using (i), we deduia®?={|¢1(¢, 1| is finite and hence

the result.

Remark: From [3, Section 3] and [4}y andpU! € L, (0, b) implies thap!"I(t, 1) € L1, (0, b) for any solutiong(t, 1)of
the equation (1.3)forale C, r=1,...,j—1, 1 <j<n-1.

Theorem 4.2 Suppose that the functioR satisfies (4.1) withc = 1, S"(r) U S(t*) c 12,(0, b), for somel, € C and

somer = 0,1, ...,n — 1, and that
(Dk(t) € 12,0, b)for allt € [0.b),
(iD)hy(£) € I2,(0, b)for allt € [0.h), i=0,12,..,n— 1.
Thenp™l(¢, 1) € 12,(0,b), r = 0,1, ...,n — 1 for any solutionsp(t, 1) of the equation (1.3), for dlle C.

Proof: Applying the Cauchy-Schwartz inequality to the grtd in (4.5) we get,
1 n n-1
- jk || ol
T l“'Zj_kzlzizo 7|0l 2, 20)]
1

x (I [of @] I wds) (fotlhi(s)||(p[i](s,/1)|2w(s)ds)zl, r=01,..,n—1 (4.7)

lo1(t, )| < Zn (€ + Dol 20)| +
j=1

Sincep; (t, 19)€L2,(0, b),for somel, € C andh;(t) € L”(0, b) by hypothesis,
thenpj (t, Ao) [k (8) [2€L2,(0, ), k = 1,2, ., n, i = 0,1,..,n— 1. Let,

N

t 2 n
Dy = ( f |0 (&, 20)] |hi(s)|w(s)ds> =) RCRILTO TR CED]
0 J=
and
1 n n-1 " 1
= ———— - j 'T
O ==l ), D 1o @],
From Lemma 2.5 we have
el D] < 2(t) + 6(0) (f 222(5) Ihy(s)lexplf; 262G hy () Iw(x)dx]w(s)ds ).
SincefOtZZ(s) |hi(s)|w(s)dsandf:Gz(x)lhi(x)lw(x)dxare both finite, we conclude that™!(t, 1)is bounded by

a linear combination of2,(0,b) functions Z(t)and G (t).Therefore, by using Lemma 2¢87!(t, 1) € 12,(0,b), r =

Impact Factor (JCC): 4.9784 NAAS Rating 3.45



On Classifications for Solutions of I ntegroQuasi-Differential Equations 11

0,1,...n— 1forall 1 € C.

Remark:If we use the Cauchy-Schwartz inequality for thegnal in (4.5) as:

1
2

f |¢;(t,ﬂo)||hi(s)||(p[i](s,/1)|w(s)dsS(f |<p;(s,ao)|2|hi(s)|2w(s)ds>2 (f |(p[i](s,/1)|zw(s)ds> :
0 0 0

i=0,1,..,n—1,we also get the result. We refer to [1 - 3] for endetails.

Corollary 4.3: Suppose th@f(t,y(t),S)| = k@) + h@®)ISG)|, ST(x) uS(zt) c 1%,(0,b) for some A, € C,and
thath(t)eL?, (0, b) for somep = 2, t € [0,b). Theng!"I(t, 1) € LL,(0,b) for any solutionsp(t, 1) of the equation (1.3),
foralll €e Cand alr =0,1,...,n — 1.

Corollary 4.4: Suppose that for somg (C, if all solutions of the equatiors]u = l,wu andz*]v = A,wv are in the

spaceL?,(0, b)for somel, € C and k(t) € L%,(0,b). Then all solutions of the equatiorjs- Aw]p = wk are in the

spacé?, (0, b)for every complex numbet €C.
Next, for considering (4.1) with < o < 1,we have the following.

Theorem 4.5: Suppose thaF satisfies (4.1) with < o < 1,S"(r) US(t*) c I2%,(0,b) for somel, € C and some =
0,1,..,n—1,and that

(Dk(t) € 12,(0, b)for allt € [0, b),
(i) hy(t) € L2/P9(0, p)forall t € [0,b), i =0,1,..,n— 1.
Thenp™I(t, 1) € 12,(0,b), r = 0,1,...,n — 1 for any solutionsp(t, 1) of the equation (1.3),for dlle C.

Proof: For0 < g < 1, the proof is the same up to (4.5). In this cds&)(becomes

n 1 n n-1
e <D G+ lg@DlelN )|+ =20 Y T (e |el e o)
Jj=1 ! |1 ul Jjk=1 i=1 /

X fot |<p,:r(t,/10)| hi(s)|<p[”(s,/1)|aw(s)ds, r=01,..,n—1. (4.8)

On applying the Cauchy-Schwartz inequality to titegral in (4.8) we get

g
2

i [PE @) Ilos D wis)ds < (f; [oF 62| I Fw(sas) (o, D wis)ds ), (4.9)

whereu = 2/(2 — ¢).Sincep; (¢, Ay) € L2,(0, b) for somel, € C, k = 1,2, ..., n andh;(s)eL? “~(0, b) by hypothesis,
then we have; (s, A,)|h;(s)| € L%, (0,b), for some 1, € C, k = 1,2,...,n.Using this fact and (4.9), we obtain

e D < " C (1 Ulee 2 ; 1-1 " nt k|| (e 2
lol"(t, )| < (€ + ;Do (2, 20)| + Kold = 2o &7 ]|l (8, 20)
j=1 |1 —ul jk=1 i=0
o 2 7
X (f0|<p[’](s,/1)| w(s)ds) L, r=01,..,n—1. (4.10)
wherek, = [l (¢, 10)R(E)|l,. |- Il denotes the norm it,, (0, b).By using the inequality

(u+v)? <2?+v?), (4.11)
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implies that

n 2 1 n n-1_ 2
e, )| < 42},:1 (67 +1e@I) |0 @ a0 + Gz 4KE 1A= 0P Z]kZ 7% [0 2, 20|

X (f0t|<p[i](s,A)|2w(s)ds>a, r=01,..,n—1. (4.12)

2
Setting(; = f0t|<pjr](t, /10)| w(s)dsfor somei, € Cand some- = 0, ...,n — 1; and integrating (4.12) we obtain

t 5 1 n n-1 5 rt 2
[l wesds < K, + Gz akdli=aol Y ST (e [ ol s, 0)
0 1-w jk=14-i=0 o !

X [(f05|<p[i] (x, A)|2W(x)dx)a] w(s)ds, (4.13)
wherek, = 437, (Cjz + |aj(,1)|2) K,.

An application of Lemma 2.4 to (4.12) for< ¢ < 1 and of Gronwalls inequality to (4.13) fos = 1yields the

result.

Theorem 4.6: Suppose thak satisfies (4.1) with < o < 1, S"(7) U S(z*) < L2,(0,b) n L*(0, b), for somel, € C and

somer = 0,1, ...,n — 1,and that

(Dk(t) € L2,(0,b)for all ¢t € [0, b),
(i))h;(t) € LV (0, b)forsomep, 1 <p <2/(1—0), i =0,1,..,n— 1. Themp"I(t, 1) € L2,(0,b) N L=(0, b),
r=20,1,..,n—1 for any solutionp(t, 1) of the equation (1.3), for all€ C.

Proof: Since S™(7) U S(t*) c L2,(0,b)for somel, € C and some=0,1,..,n— 1, then <p][.” (t, A0), @i(s, ) €

L1 (0,b), j, k =1, ...,nfor everyq > 2 and for somel, € Cand some = 0,1, ...,n — 1.
First, suppose that;(t) € LY (0, b)for somg, 1 < p < 2. Setting
Ko = [0}t 20)||_and K = I 0@ A)llaifik = 1.,

for somed, € Cand some = 0,1, ...,n — Lwe have from (4.8) that

n 1
loT1(E, D] < Kozl ) € + gD + mkoklu — Aol
]:

X (22cy ZEHE] 5 ha()] @l (s, )| w(s)ds). (4.14)

Sincen; (t) € LV (0,b) for somep,1 < p < 2,then Lemma 2.2 together with Gronwallnequality implies that
o"(t, 1) € L°(0,b) forall A € C, i.e., there exists a positive constaisuch that

lp(t, )| < K;forallae ¢, t€[0,b), r=0,1,..,n—1. (4.15)

From (4.8) and (4.15) we obtain
|(p[r](t,/1)| < E ' 1(Cj + |aj(/1)| + 1(3)|<pjr](t,/10)|
Jj=
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for any appropriate constant K;.  Since <p][.r](t,/10)eLﬁ,(0,b) for some A,€C and some

r=0,,..,n—1, thempl(t,1) € I%,(0,b)for all 1€ C, 1<p < 2.Next, suppose thah;(t) € I®,(0,b) for some

p,2<p<2/(1-0),i=0,1, ..,n—1. Defineq =2 by
1 2-0 1

q 2 p

(which is possible because of the restrictiomhmThu&pj[.r] (s, 49), @7 (t, ) € LL(0,b) and @} (t, Ao)h(t) €
L4,(0,b), p=2/(2 - 0).

Repeating the same argument in the proof of Theatd&mand from (4.9) to (4.13), we obtain tplit(t,1) €
12,(0, b). Returning to (4.9), we find that the integral be teft-hand side is bounded, which implies, bg)4hat

n
PR =N (G + @]+ K)o 20)]
Jj=
for an appropriate constaki. Since<p][.r](t, Ao) € L*(0, b), this completes the proof. We refer to [1 - 6] §b6]
for more details.
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